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1
DRY-ETCH FOR SELECTIVE TUNGSTEN
REMOVAL

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/840,206 filed Mar. 15, 2013, which claims the
benefit of U.S. Provisional Application No. 61/753,677 by
Wang et al, filed Jan. 17, 2013, and titled “DRY-ETCH FOR
SELECTIVE TUNGSTEN REMOVAL.” This application is
also related to U.S. Provisional Application No. 61/732,074
by Kim et al, filed Nov. 30,2012 and titled “DRY-ETCH FOR
SELECTIVE OXIDATION REMOVAL.” Each of the above
U.S. applications is incorporated herein in its entirety for all
purposes.

BACKGROUND OF THE INVENTION

Integrated circuits are made possible by processes which
produce intricately patterned material layers on substrate sur-
faces. Producing patterned material on a substrate requires
controlled methods for removal of exposed material. Chemi-
cal etching is used for a variety of purposes including trans-
ferring a pattern in photoresist into underlying layers, thin-
ning layers or thinning lateral dimensions of features already
present on the surface. Often it is desirable to have an etch
process which etches one material faster than another helping
e.g. apattern transfer process proceed. Such an etch process is
said to be selective to the first material. As a result of the
diversity of materials, circuits and processes, etch processes
have been developed with a selectivity towards a variety of
materials. However, there are few options for selectively etch-
ing metals.

Dry etch processes are often desirable for selectively
removing material from semiconductor substrates. The desir-
ability stems from the ability to gently remove material from
miniature structures with minimal physical disturbance. Dry
etch processes also allow the etch rate to be abruptly stopped
by removing the gas phase reagents. Some dry-etch processes
involve the exposure of a substrate to remote plasma by-
products formed from one or more precursors. For example,
remote plasma excitation of ammonia and nitrogen trifluoride
enables silicon oxide to be selectively removed from a pat-
terned substrate when the plasma effluents are flowed into the
substrate processing region. Remote plasma etch processes
have recently been developed to selectively remove a variety
of'dielectrics relative to one another. However, fewer dry-etch
processes have been developed to selectively remove metals
and their native oxidation.

Methods are needed to selectively and delicately etch
exposed metal surfaces.

BRIEF SUMMARY OF THE INVENTION

Methods of selectively etching tungsten relative to silicon-
containing films (e.g. silicon oxide, silicon carbon nitride and
(poly)silicon) as well as tungsten oxide are described. The
methods include a remote plasma etch formed from a fluo-
rine-containing precursor and/or hydrogen (H,). Plasma
effluents from the remote plasma are flowed into a substrate
processing region where the plasma effluents react with the
tungsten. The plasma effluents react with exposed surfaces
and selectively remove tungsten while very slowly removing
other exposed materials. Sequential and simultaneous meth-
ods are included to remove thin tungsten oxide which may, for
example, result from exposure to the atmosphere.
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Embodiments of the invention include methods of etching
a patterned substrate in a substrate processing region of a
substrate processing chamber. The patterned substrate has a
exposed tungsten region and an exposed second material
region. The methods include flowing a fluorine-containing
precursor into a remote plasma region fluidly coupled to the
substrate processing region while forming a plasma in the
plasma region to produce plasma effluents. The methods fur-
ther include etching the exposed tungsten from the substrate
by flowing the plasma effluents into the substrate processing
region through through-holes in a showerhead.

Additional embodiments and features are set forth in part
in the description that follows, and in part will become appar-
ent to those skilled in the art upon examination of the speci-
fication or may be learned by the practice of the disclosed
embodiments. The features and advantages of the disclosed
embodiments may be realized and attained by means of the
instrumentalities, combinations, and methods described in
the specification.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of the
disclosed embodiments may be realized by reference to the
remaining portions of the specification and the drawings.

FIG. 1 is a flow chart of a tungsten selective etch process
according to disclosed embodiments.

FIG. 2A shows a schematic cross-sectional view of a sub-
strate processing chamber according to the disclosed technol-
ogy.
FIG. 2B shows a schematic cross-sectional view of a por-
tion of a substrate processing chamber according to the dis-
closed technology.

FIG. 2C shows a bottom plan view of a showerhead accord-
ing to the disclosed technology.

FIG. 3 shows a top plan view of an exemplary substrate
processing system according to the disclosed technology.

In the appended figures, similar components and/or fea-
tures may have the same reference label. Further, various
components of the same type may be distinguished by fol-
lowing the reference label by a dash and a second label that
distinguishes among the similar components. If only the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second reference
label.

DETAILED DESCRIPTION OF THE INVENTION

Methods of selectively etching tungsten relative to silicon-
containing films (e.g. silicon oxide, silicon carbon nitride and
(poly)silicon) as well as tungsten oxide are described. The
methods include a remote plasma etch formed from a fluo-
rine-containing precursor and/or hydrogen (H,). Plasma
effluents from the remote plasma are flowed into a substrate
processing region where the plasma effluents react with the
tungsten. The plasma effluents react with exposed surfaces
and selectively remove tungsten while very slowly removing
other exposed materials. Sequential and simultaneous meth-
ods are included to remove thin tungsten oxide which may, for
example, result from exposure to the atmosphere.

An ion suppression element may be included in the etch
processes discussed herein in order to achieve high tungsten
selectivity. The ion suppression element functions to reduce
or eliminate ionically charged species traveling from the
plasma generation region to the substrate. Uncharged neutral
and radical species may pass through the openings in the ion
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suppressor to react at the substrate. The ion suppressor helps
control the concentration of ionic species in the reaction
region at a level that assists the process.

In accordance with some embodiments of the invention, an
ion suppressor as described in the exemplary equipment sec-
tion may be used to provide radical and/or neutral species for
selectively etching substrates. In one embodiment, for
example, an ion suppressor is used to provide fluorine-con-
taining plasma effluents to selectively etch tungsten. The ion
suppressor may be used to provide a reactive gas having a
higher concentration of radicals than ions. Because most of
the charged particles of a plasma are filtered or removed by
the ion suppressor, the substrate is not necessarily biased
during the etch process. Such a process using radicals and
other neutral species can reduce plasma damage compared to
conventional plasma etch processes that include sputtering
and bombardment. Embodiments of the present invention are
also advantageous over conventional wet etch processes
where surface tension of liquids can cause bending and peel-
ing of small features.

In order to better understand and appreciate the invention,
reference is now made to FIG. 1 which is a flow chart of a
tungsten selective etch process according to disclosed
embodiments. The tungsten may also have a thin native oxide
layer on its surface due to atmospheric exposure. The tung-
sten may be in the form of a blanket layer on the substrate or
it may reside in discrete regions of a patterned substrate
surface. In either case, the tungsten forms exposed surfaces of
the surface of the substrate. The substrate is then delivered
into a processing region (operation 110). A thin layer of
tungsten oxide may be present over the otherwise exposed
tungsten regions of the substrate prior to delivering the sub-
strate into the processing region. after delivering the substrate
to the processing region, for example, by treating exposed
regions of tungsten to a reactive oxygen source.

A flow of nitrogen trifluoride is introduced into a plasma
region separate from the processing region (operation 120).
Other sources of fluorine may be used to augment or replace
the nitrogen trifluoride. In general, a fluorine-containing pre-
cursor may be flowed into the plasma region and the fluorine-
containing precursor comprises at least one precursor
selected from the group consisting of atomic fluorine,
diatomic fluorine, bromine trifluoride, chlorine trifluoride,
nitrogen trifluoride, hydrogen fluoride, sulfur hexafluoride
and xenon difluoride. However, the inventors have observed
higher etch rates for all embodiments disclosed herein when
using nitrogen trifluoride in the mix of precursors delivered to
the remote plasma region. The inventors conjecture that nitro-
gen trifluoride plasma effluents experience a significantly
longer excited lifetime prior to deexcitation and/or recombi-
nation. The extended lifetime allows etch species to travel
from remote plasma region into the vicinity of the substrate
prior to deexcitation/recombination.

The separate plasma region may be referred to as a remote
plasma region herein and may be within a distinct module
from the processing chamber or a compartment within the
processing chamber. A carbon-and-hydrogen-containing pre-
cursor, in this case methyl fluoride (CH,F) is also flowed into
the plasma region (operation 125) where it is simultaneously
excited in a plasma along with the nitrogen trifluoride. The
flow rate of the atomic hydrogen may be greater than the flow
rate of the atomic fluorine in order to maintain a removal rate
of tungsten. In this example, fluorine contributions come
from both the carbon source and the nitrogen trifluoride. The
contribution from each precursor must be considered in order
to calculate the H:F atomic flow ratio. Diatomic hydrogen
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(H,) may be added as well and is necessary in some instances
so that an atomic flow rate ratio greater than H:F=1 is pos-
sible.

The plasma effluents formed in the remote plasma region
are then flowed into the substrate processing region (opera-
tion 130). Tungsten on the substrate is selectively etched
(operation 135) such that tungsten may be removed more
rapidly than a variety of other materials. The selective etch
disclosed in all examples disclosed herein may etch tungsten
significantly faster than one of tungsten oxide, titanium
nitride or a silicon-containing material such as silicon (e.g.
polysilicon), silicon oxide, silicon nitride or silicon carbon
nitride in embodiments of the invention. Such a process may
have broad-based utility, but may find clear utility in remov-
ing a layer of tungsten gapfill used to fill small high aspect
ratio trenches (such as may be used to form a temporary
separator between vertically integrated memory sub-ele-
ments). The invention may involve maintenance of an atomic
flow ratio of fluorine (F) to hydrogen (H) in order achieve
high etch selectivity of tungsten. The copresence of fluorine
and hydrogen is thought to enable two reactions to proceed:
(1) one which consumes hydrogen (from CH,F) to convert
native tungsten oxide to tungsten by shedding moisture
through the exhaust system and (2) another reaction which
consumes fluorine to remove tungsten in the form of
exhausted tungsten hexafluoride (WFy). Maintaining an
atomic flow ratio (H:F) greater than 1:1, the inventors have
found that the collective process is highly selective of tung-
sten over a variety of other materials including tungsten
oxide, despite being capable of removing a thin native tung-
sten oxide. The reactive chemical species and any process
effluents are removed from the substrate processing region
and then the substrate is removed from the processing region
(operation 145).

In disclosed embodiments, an atomic gas flow ratio (H:F)
greater than or about 1:1, greater than or about 2:1 or greater
than or about 3:1. An atomic gas flow ratio (H:F) less than or
about 15:1, less than or about 12:1, less than or about 10:1 or
less than or about 7:1 is used, in embodiments of the inven-
tion, to achieve favorable selectivities. The inventors have
also found that selective dry etches described herein can
achieve favorable selectivities without any hydrogen compo-
nent when not native oxide is present on a tungsten surface.
The etch selectivity (tungsten:secondary material other than
tungsten) of the processes disclosed herein may be greater
than or about 10:1, greater than or about 20:1, greater than or
about 50:1, or greater than or about 100:1 for materials other
than in embodiments of the invention. The inventors have
found that the processes disclosed herein display etch selec-
tivities of tungsten relative to a variety of specific materials.
The etch selectivity of tungsten relative to (poly)silicon may
be greater than or about 100:1, greater than or about 150:1,
greater than or about 200:1 or greater than or about 250:1 in
disclosed embodiments. The etch selectivity of tungsten rela-
tive to silicon oxide may be greater than or about 15:1, greater
than or about 25:1, greater than or about 30:1 or greater than
or about 40:1 in embodiments of the invention. The etch
selectivity of tungsten relative to silicon carbon nitride may
be greater than or about 3:1, greater than or about 5:1, greater
than or about 7:1 or greater than or about 10:1 in embodi-
ments of the invention. The etch selectivity of tungsten rela-
tive to tungsten oxide may be greater than or about 10:1,
greater than or about 20:1, greater than or about 50:1 or
greater than or about 100:1 in embodiments of the invention.

The flows of the fluorine-containing precursor and the
carbon-and-hydrogen-containing precursor may further
include one or more relatively inert gases such as He, N, Ar.
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The inert gas can be used to improve plasma stability, process
uniformity and the like. Argon is helpful, as an additive, to
promote the formation of a stable plasma. Process uniformity
is generally increased when helium is included. These addi-
tives are present in embodiments throughout this specifica-
tion. Flow rates and ratios of the different gases may be used
to control etch rates and etch selectivity.

In disclosed embodiments, the fluorine-containing gas
(e.g. NF,) is supplied at a flow rate of between about 25 sccm
(standard cubic centimeters per minute) and 400 sccm, CH;F
at a flow rate of between about 50 sccm and 600 sccm, He at
aflow rate of between about 0 slm (standard liters per minute)
and 3 slm, and Ar at a flow rate of between about 0 slm and 3
slm. One of ordinary skill in the art would recognize that other
gases and/or flows may be used depending on a number of
factors including processing chamber configuration, sub-
strate size, geometry and layout of features being etched, and
the like. Inclusion of a flow of hydrogen (H,) into the remote
plasma region can lessen the flow rate requirement for methyl
fluoride. The inventors have also found that flowing a com-
bination of hydrogen (H,) and carbon tetrafluoride (CF,) is a
productive replacement of CH,F, CH,F, or CHF; as well as
precursors of the general form CxHyFz, in other words par-
tially fluorinated hydrocarbons. Therefore, a carbon-and-hy-
drogen-containing precursor, as recited herein, includes a
flow of a hydrogen-containing precursor and carbon-contain-
ing precursor into the remote plasma region in disclosed
embodiments.

The method also includes applying energy to the fluorine-
containing precursor and the carbon-and-hydrogen-contain-
ing precursor (CH,F) while they are in the remote plasma
region to generate the plasma effluents. As would be appre-
ciated by one of ordinary skill in the art, the plasma may
include a number of charged and neutral species including
radicals and ions. The plasma may be generated using known
techniques (e.g., radio frequency excitations, capacitively-
coupled power, inductively coupled power, and the like). In
an embodiment, the energy is applied using a capacitively-
coupled plasma unit. The remote plasma source power may
be between about 40 watts and about 500 watts, between
about 75 watts and about 400 watts, between about 150 watts
and about 350 watts, or between about 200 watts and about
300 watts in embodiments of the invention. The narrowest RF
power embodiment optimizes the selective removal of tung-
sten relative to a variety of other exposed materials including
silicon carbon nitride. The pressure in the remote plasma
region may be such that the pressure in the substrate process-
ing region ends up between about 0.01 Torr and about 50 Torr
or between about 0.1 Torr and about 5 Torr in disclosed
embodiments. The capacitively-coupled plasma unit may be
disposed remote from a gas reaction region of the processing
chamber. For example, the capacitively-coupled plasma unit
and the plasma generation region may be separated from the
gas reaction region by a showerhead.

The temperature of the substrate during this first example
may be between about -30° C. and about 400° C. in general.
In embodiments, the temperature of the substrate during the
dry etches described in this section may be greater than or
about —30° C., greater than or about —10° C., greater than or
about 10° C., or greater than or about 25° C. The substrate
temperatures may be less than or about 400° C., less than or
about350° C., less than or about 250° C. in disclosed embodi-
ments. The etch rate of tungsten was found to rise with
increased substrate temperature (from about 10° C. up
through 100° C.) but using lower temperatures was helpful for
achieving high selectivities by suppressing, for example, the
etch rate of tungsten oxide.
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An additional step may be included (prior to operations
120-135) by providing a flow of hydrogen (H,) to the remote
plasma region. The plasma effluents produced from the
excited molecular hydrogen (H,) has been found by the
inventors to remove, presumably, the oxygen from the native
tungsten oxide. The net effect was that this additional step
exposed a predominantly tungsten region to the further pro-
cessing depicted in FIG. 1. The addition of a fluorine-con-
taining precursor to the remote plasma region during this step
is optional, in part, because of the thinness of native oxides
formed when tungsten is exposed to atmosphere.

Additional process parameters are disclosed in the course
of describing an exemplary processing chamber and system.
Exemplary Processing System

FIG. 2A shows a cross-sectional view of an exemplary
substrate processing chamber 1001 with partitioned plasma
generation regions within the processing chamber. During
film etching, e.g., titanium nitride, tantalum nitride, tungsten,
silicon, polysilicon, silicon oxide, silicon nitride, silicon
oxynitride, silicon oxycarbide, etc., a process gas may be
flowed into chamber plasma region 1015 through a gas inlet
assembly 1005. A remote plasma system (RPS) 1002 may
optionally be included in the system, and may process a first
gas which then travels through gas inlet assembly 1005. The
inlet assembly 1005 may include two or more distinct gas
supply channels where the second channel (not shown) may
bypass the RPS 1002, if included. Accordingly, in disclosed
embodiments the precursor gases may be delivered to the
processing chamber in an unexcited state. In another
example, the first channel provided through the RPS may be
used for the process gas and the second channel bypassing the
RPS may be used for a treatment gas in disclosed embodi-
ments. The process gas may be excited within the RPS 1002
prior to entering the chamber plasma region 1015. Accord-
ingly, the fluorine-containing precursor as discussed above,
for example, may pass through RPS 1002 or bypass the RPS
unit in disclosed embodiments. Various other examples
encompassed by this arrangement will be similarly under-
stood.

A cooling plate 1003, faceplate 1017, ion suppressor 1023,
showerhead 1025, and a substrate support 1065 (also known
as a pedestal), having a substrate 1055 disposed thereon, are
shown and may each be included according to disclosed
embodiments. The pedestal 1065 may have a heat exchange
channel through which a heat exchange fluid flows to control
the temperature of the substrate. This configuration may
allow the substrate 1055 temperature to be cooled or heated to
maintain relatively low temperatures, such as between about
-20° C. to about 200° C., or therebetween. The heat exchange
fluid may comprise ethylene glycol and/or water. The wafer
support platter of the pedestal 1065, which may comprise
aluminum, ceramic, or a combination thereof, may also be
resistively heated in order to achieve relatively high tempera-
tures, such as from up to or about 100° C. to above or about
1100° C., using an embedded resistive heater element. The
heating element may be formed within the pedestal as one or
more loops, and an outer portion of the heater element may
run adjacent to a perimeter of the support platter, while an
inner portion runs on the path of a concentric circle having a
smaller radius. The wiring to the heater element may pass
through the stem of the pedestal 1065, which may be further
configured to rotate.

The faceplate 1017 may be pyramidal, conical, or of
another similar structure with a narrow top portion expanding
to a wide bottom portion. The faceplate 1017 may addition-
ally be flat as shown and include a plurality of through-
channels used to distribute process gases. Plasma generating
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gases and/or plasma excited species, depending on use of the
RPS 1002, may pass through a plurality of holes, shown in
FIG. 2B, in faceplate 1017 for a more uniform delivery into
the chamber plasma region 1015.

Exemplary configurations may include having the gas inlet
assembly 1005 open into a gas supply region 1058 partitioned
from the chamber plasma region 1015 by faceplate 1017 so
that the gases/species flow through the holes in the faceplate
1017 into the chamber plasma region 1015. Structural and
operational features may be selected to prevent significant
backflow of plasma from the chamber plasma region 1015
back into the supply region 1058, gas inlet assembly 1005,
and fluid supply system 1010. The structural features may
include the selection of dimensions and cross-sectional
geometries of the apertures in faceplate 1017 to deactivate
back-streaming plasma. The operational features may
include maintaining a pressure difference between the gas
supply region 1058 and chamber plasma region 1015 that
maintains a unidirectional flow of plasma through the show-
erhead 1025. The faceplate 1017, or a conductive top portion
of the chamber, and showerhead 1025 are shown with an
insulating ring 1020 located between the features, which
allows an AC potential to be applied to the faceplate 1017
relative to showerhead 1025 and/or ion suppressor 1023. The
insulating ring 1020 may be positioned between the faceplate
1017 and the showerhead 1025 and/or ion suppressor 1023
enabling a capacitively coupled plasma (CCP) to be formed in
the first plasma region. A baffle (not shown) may additionally
be located in the chamber plasma region 1015, or otherwise
coupled with gas inlet assembly 1005, to affect the flow of
fluid into the region through gas inlet assembly 1005.

The ion suppressor 1023 may comprise a plate or other
geometry that defines a plurality of apertures throughout the
structure that are configured to suppress the migration of
ionically-charged species out of chamber plasma region 1015
while allowing uncharged neutral or radical species to pass
through the ion suppressor 1023 into an activated gas delivery
region between the suppressor and the showerhead. In dis-
closed embodiments, the ion suppressor 1023 may comprise
a perforated plate with a variety of aperture configurations.
These uncharged species may include highly reactive species
that are transported with less reactive carrier gas through the
apertures. As noted above, the migration of ionic species
through the holes may be reduced, and in some instances
completely suppressed. Controlling the amount of ionic spe-
cies passing through the ion suppressor 1023 may provide
increased control over the gas mixture brought into contact
with the underlying wafer substrate, which in turn may
increase control of the deposition and/or etch characteristics
of the gas mixture. For example, adjustments in the ion con-
centration of the gas mixture can significantly alter its etch
selectivity, e.g., W:WOx etch ratios, W:SiCN etch ratios, etc.
Inalternative embodiments in which deposition is performed,
it can also shift the balance of conformal-to-flowable style
depositions for dielectric materials.

The plurality of holes in the ion suppressor 1023 may be
configured to control the passage of the activated gas, i.e., the
ionic, radical, and/or neutral species, through the ion suppres-
sor 1023. For example, the aspect ratio of the holes, or the
hole diameter to length, and/or the geometry of the holes may
be controlled so that the flow of ionically-charged species in
the activated gas passing through the ion suppressor 1023 is
reduced. The holes in the ion suppressor 1023 may include a
tapered portion that faces chamber plasma region 1015, and a
cylindrical portion that faces the showerhead 1025. The cylin-
drical portion may be shaped and dimensioned to control the
flow of ionic species passing to the showerhead 1025. An
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adjustable electrical bias may also be applied to the ion sup-
pressor 1023 as an additional means to control the flow of
ionic species through the suppressor.

The ion suppression element 1023 may function to reduce
or eliminate the amount of ionically charged species traveling
from the plasma generation region to the substrate.
Uncharged neutral and radical species may still pass through
the openings in the ion suppressor to react with the substrate.
It should be noted that the complete elimination of ionically
charged species in the reaction region surrounding the sub-
strate is not always the desired goal. In many instances, ionic
species are required to reach the substrate in order to perform
the etch and/or deposition process. In these instances, the ion
suppressor may help to control the concentration of ionic
species in the reaction region at a level that assists the process.

Showerhead 1025 in combination with ion suppressor
1023 may allow a plasma present in chamber plasma region
1015 to avoid directly exciting gases in substrate processing
region 1033, while still allowing excited species to travel
from chamber plasma region 1015 into substrate processing
region 1033. In this way, the chamber may be configured to
prevent the plasma from contacting a substrate 1055 being
etched. This may advantageously protect a variety of intricate
structures and films patterned on the substrate, which may be
damaged, dislocated, or otherwise warped if directly con-
tacted by a generated plasma. Additionally, when plasma is
allowed to contact the substrate or approach the substrate
level, the rate at which oxide species etch may increase.
Accordingly, if the exposed second material is oxide, this
material may be further protected by maintaining the plasma
remotely from the substrate.

The processing system may further include a power supply
1040 electrically coupled with the processing chamber to
provide electric power to the faceplate 1017, ion suppressor
1023, showerhead 1025, and/or pedestal 1065 to generate a
plasma in the chamber plasma region 1015 or processing
region 1033. The power supply may be configured to deliver
an adjustable amount of power to the chamber depending on
the process performed. Such a configuration may allow for a
tunable plasma to be used in the processes being performed.
Unlike a remote plasma unit, which is often presented with on
or off functionality, a tunable plasma may be configured to
deliver a specific amount of power to chamber plasma region
1015. This in turn may allow development of particular
plasma characteristics such that precursors may be dissoci-
ated in specific ways to enhance the etching profiles produced
by these precursors.

A plasma may be ignited either in chamber plasma region
1015 above showerhead 1025 or substrate processing region
1033 below showerhead 1025. A plasma may be present in
chamber plasma region 1015 to produce the radical-fluorine
precursors from an inflow of the fluorine-containing precur-
sor. An AC voltage typically in the radio frequency (RF) range
may be applied between the conductive top portion of the
processing chamber, such as faceplate 1017, and showerhead
1025 and/or ion suppressor 1023 to ignite a plasma in cham-
ber plasma region 1015 during deposition. An RF power
supply may generate a high RF frequency of 13.56 MHz but
may also generate other frequencies alone or in combination
with the 13.56 MHz frequency.

Plasma power can be of a variety of frequencies or a com-
bination of multiple frequencies. In the exemplary processing
system the plasma may be provided by RF power delivered to
faceplate 1017 relative to ion suppressor 1023 and/or show-
erhead 1025. The RF power may be between about 10 watts
and about 2000 watts, between about 100 watts and about
2000 watts, between about 200 watts and about 1500 watts, or
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between about 200 watts and about 1000 watts in different
embodiments. The RF frequency applied in the exemplary
processing system may be low RF frequencies less than about
200 kHz, high RF frequencies between about 10 MHz and
about 15 MHz, or microwave frequencies greater than or
about 1 GHz in different embodiments. The plasma power
may be capacitively-coupled (CCP) or inductively-coupled
(ICP) into the remote plasma region.

Chamber plasma region 1015 (top plasma in figure) may be
left at low or no power when a bottom plasma in the substrate
processing region 1033 is turned on to, for example, cure a
film or clean the interior surfaces bordering substrate process-
ing region 1033. A plasma in substrate processing region
1033 may be ignited by applying an AC voltage between
showerhead 1055 and the pedestal 1065 or bottom of the
chamber. A cleaning gas may be introduced into substrate
processing region 1033 while the plasma is present.

A fluid, such as a precursor, for example a fluorine-con-
taining precursor, may be flowed into the processing region
1033 by embodiments of the showerhead described herein.
Excited species derived from the process gas in chamber
plasma region 1015 may travel through apertures in the ion
suppressor 1023, and/or showerhead 1025 and react with an
additional precursor flowing into the processing region 1033
from a separate portion of the showerhead. Alternatively, ifall
precursor species are being excited in chamber plasma region
1015, no additional precursors may be flowed through the
separate portion of the showerhead. Little or no plasma may
be present in the processing region 1033. Excited derivatives
of the precursors may combine in the region above the sub-
strate and, on occasion, on the substrate to etch structures or
remove species on the substrate in disclosed applications.

Exciting the fluids in the chamber plasma region 1015
directly, or exciting the fluids in the RPS units 1002, may
provide several benefits. The concentration of the excited
species derived from the fluids may be increased within the
processing region 1033 due to the plasma in the chamber
plasma region 1015. This increase may result from the loca-
tion of the plasma in the chamber plasma region 1015. The
processing region 1033 may be located closer to the chamber
plasma region 1015 than the remote plasma system (RPS)
1002, leaving less time for the excited species to leave excited
states through collisions with other gas molecules, walls of
the chamber, and surfaces of the showerhead.

The uniformity of the concentration of the excited species
derived from the process gas may also be increased within the
processing region 1033. This may result from the shape of the
chamber plasma region 1015, which may be more similar to
the shape of the processing region 1033. Excited species
created in the RPS 1002 may travel greater distances in order
to pass through apertures near the edges of the showerhead
1025 relative to species that pass through apertures near the
center of the showerhead 1025. The greater distance may
result in a reduced excitation of the excited species and, for
example, may result in a slower growth rate near the edge of
a substrate. Exciting the fluids in the chamber plasma region
1015 may mitigate this variation for the fluid flowed through
RPS 1002, or alternatively bypassed around the RPS unit.

The processing gases may be excited in chamber plasma
region 1015 and may be passed through the showerhead 1025
to the processing region 1033 in the excited state. While a
plasma may be generated in the processing region 1033, a
plasma may alternatively not be generated in the processing
region. In one example, the only excitation of the processing
gas or precursors may be from exciting the processing gases
in chamber plasma region 1015 to react with one another in
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the processing region 1033. As previously discussed, this may
be to protect the structures patterned on the substrate 1055.

In addition to the fluid precursors, there may be other gases
introduced at varied times for varied purposes, including
carrier gases to aid delivery. A treatment gas may be intro-
duced to remove unwanted species from the chamber walls,
the substrate, the deposited film and/or the film during depo-
sition. A treatment gas may be excited in a plasma and then
used to reduce or remove residual content inside the chamber.
In other disclosed embodiments the treatment gas may be
used without a plasma. When the treatment gas includes water
vapor, the delivery may be achieved using a mass flow meter
(MFM), an injection valve, or by commercially available
water vapor generators. The treatment gas may be introduced
to the processing region 1033, either through the RPS unit or
bypassing the RPS unit, and may further be excited in the first
plasma region.

FIG. 2B shows a detailed view of the features affecting the
processing gas distribution through faceplate 1017. As shown
in FIG. 2A and FIG. 2B, faceplate 1017, cooling plate 1003,
and gas inlet assembly 1005 intersect to define a gas supply
region 1058 into which process gases may be delivered from
gas inlet 1005. The gases may fill the gas supply region 1058
and flow to chamber plasma region 1015 through apertures
1059 in faceplate 1017. The apertures 1059 may be config-
ured to direct flow in a substantially unidirectional manner
such that process gases may flow into processing region 1033,
but may be partially or fully prevented from backflow into the
gas supply region 1058 after traversing the faceplate 1017.

The gas distribution assemblies such as showerhead 1025
for use in the processing chamber section 1001 may be
referred to as dual channel showerheads (DCSH) and are
additionally detailed in the embodiments described in FIG.
2A as well as FIG. 2C herein. The dual channel showerhead
may provide for etching processes that allow for separation of
etchants outside of the processing region 1033 to provide
limited interaction with chamber components and each other
prior to being delivered into the processing region.

The showerhead 1025 may comprise an upper plate 1014
and a lower plate 1016. The plates may be coupled with one
another to define a volume 1018 between the plates. The
coupling of the plates may be so as to provide first fluid
channels 1019 through the upper and lower plates, and second
fluid channels 1021 through the lower plate 1016. The formed
channels may be configured to provide fluid access from the
volume 1018 through the lower plate 1016 via second fluid
channels 1021 alone, and the first fluid channels 1019 may be
fluidly isolated from the volume 1018 between the plates and
the second fluid channels 1021. The volume 1018 may be
fluidly accessible through a side of the gas distribution assem-
bly 1025. Although the exemplary system of FIG. 2 includes
a dual-channel showerhead, it is understood that alternative
distribution assemblies may be utilized that maintain first and
second precursors fluidly isolated prior to the processing
region 1033. For example, a perforated plate and tubes under-
neath the plate may be utilized, although other configurations
may operate with reduced efficiency or not provide as uni-
form processing as the dual-channel showerhead as
described.

In the embodiment shown, showerhead 1025 may distrib-
ute via first fluid channels 1019 process gases which contain
plasma effluents upon excitation by a plasma in chamber
plasma region 1015. In embodiments, the process gas intro-
duced into the RPS 1002 and/or chamber plasma region 1015
may contain fluorine, e.g., CF,, NF; or XeF,. The process gas
may also include a carrier gas such as helium, argon, nitrogen
(N,), etc. Plasma effluents may include ionized or neutral
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derivatives of the process gas and may also be referred to
herein as a radical-fluorine precursor referring to the atomic
constituent of the process gas introduced.

FIG. 2Cis abottom view of a showerhead 1025 foruse with
a processing chamber according to disclosed embodiments.
Showerhead 1025 corresponds with the showerhead shown in
FIG. 2A. Through-holes 1031, which show a view of first
fluid channels 1019, may have a plurality of shapes and con-
figurations in order to control and affect the flow of precursors
through the showerhead 1025. Small holes 1027, which show
a view of second fluid channels 1021, may be distributed
substantially evenly over the surface of the showerhead, even
amongst the through-holes 1031, which may help to provide
more even mixing of the precursors as they exit the shower-
head than other configurations.

An additional dual channel showerhead, as well as this
processing system and chamber, are more fully described in
patent application Ser. No. 13/251,714 filed on Oct. 3, 2011,
which is hereby incorporated by reference for all purposes to
the extent not inconsistent with the claimed features and
description herein.

The chamber plasma region 1015 or a region in an RPS
may be referred to as a remote plasma region. In embodi-
ments, the radical precursor, e.g., aradical-fluorine precursor,
is created in the remote plasma region and travels into the
substrate processing region where it may or may not combine
with additional precursors. In embodiments, the additional
precursors are excited only by the radical-fluorine precursor.
Plasma power may essentially be applied only to the remote
plasma region in embodiments to ensure that the radical-
fluorine precursor provides the dominant excitation. Nitrogen
trifluoride or another fluorine-containing precursor may be
flowed into chamber plasma region 1015 at rates between
about 25 sccm and about 500 sccm, between about 50 sccm
and about 150 sccm, or between about 75 scem and about 125
sccm in disclosed embodiments. Methyl fluoride or another
partially fluorinated hydro-carbon may be flowed with a flow-
rate that results in an atomic H:F flow rate ratio of greater
than, for example, 1:1.

Combined flow rates of precursors into the chamber may
account for 0.05% to about 20% by volume of the overall gas
mixture; the remainder being carrier gases. The fluorine-
containing precursor may be flowed into the remote plasma
region, but the plasma effluents may have the same volumet-
ric flow ratio in embodiments. In the case of the fluorine-
containing precursor, a purge or carrier gas may be first ini-
tiated into the remote plasma region before the fluorine-
containing gas to stabilize the pressure within the remote
plasma region.

Substrate processing region 1033 can be maintained at a
variety of pressures during the flow of precursors, any carrier
gases, and plasma effluents into substrate processing region
1033. The pressure may be maintained between about 0.1
mTorr and about 100 Torr, between about 1 Torr and about 20
Torr or between about 1 Torr and about 5 Torr in different
embodiments.

Embodiments of the deposition systems may be incorpo-
rated into larger fabrication systems for producing integrated
circuit chips. FIG. 3 shows one such processing system 1101
of deposition, etching, baking, and curing chambers accord-
ing to disclosed embodiments. In the figure, a pair of front
opening unified pods (load lock chambers 1102) supply sub-
strates of a variety of sizes that are received by robotic arms
1104 and placed into a low pressure holding area 1106 before
being placed into one of the substrate processing chambers
1108a-f. A second robotic arm 1110 may be used to transport
the substrate wafers from the holding area 1106 to the sub-
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strate processing chambers 1108a-f'and back. Each substrate
processing chamber 1108a-f, can be outfitted to perform a
number of substrate processing operations including the dry
etch processes described herein in addition to cyclical layer
deposition (CLD), atomic layer deposition (ALD), chemical
vapor deposition (CVD), physical vapor deposition (PVD),
etch, pre-clean, degas, orientation, and other substrate pro-
cesses.

The substrate processing chambers 1108a-f may include
one or more system components for depositing, annealing,
curing and/or etching a dielectric film on the substrate wafer.
In one configuration, two pairs of the processing chamber,
e.g., 1108¢-d and 1108e-f, may be used to deposit dielectric
material on the substrate, and the third pair of processing
chambers, e.g., 1108a-b, may be used to etch the deposited
dielectric. In another configuration, all three pairs of cham-
bers, e.g., 1108a-f, may be configured to etch a dielectric film
on the substrate. Any one or more of the processes described
may be carried out in chamber(s) separated from the fabrica-
tion system shown in different embodiments.

In the preceding description, for the purposes of explana-
tion, numerous details have been set forth in order to provide
an understanding of various embodiments of the present
invention. It will be apparent to one skilled in the art, however,
that certain embodiments may be practiced without some of
these details, or with additional details.

As used herein “substrate” may be a support substrate with
or without layers formed thereon. The patterned substrate
may be an insulator or a semiconductor of a variety of doping
concentrations and profiles and may, for example, be a semi-
conductor substrate of the type used in the manufacture of
integrated circuits. Exposed “silicon” of the patterned sub-
strate is predominantly Si but may include minority concen-
trations of other elemental constituents such as nitrogen, oxy-
gen, hydrogen, carbon and the like. Exposed “tungsten” of the
patterned substrate is predominantly W but may include
minority concentrations of other elemental constituents such
as nitrogen, oxygen, hydrogen, carbon and the like. Of
course, “exposed tungsten” may consist of only tungsten.
Exposed “silicon nitride” of the patterned substrate is pre-
dominantly Si;N, but may include minority concentrations of
other elemental constituents such as oxygen, hydrogen, car-
bon and the like. “Exposed silicon nitride” may consist only
of silicon and nitrogen. Exposed “silicon oxide” of the pat-
terned substrate is predominantly SiO, but may include
minority concentrations of other elemental constituents such
as nitrogen, hydrogen, carbon and the like. In some embodi-
ments, silicon oxide films etched using the methods disclosed
herein consist of silicon and oxygen. “Tungsten oxide” is
predominantly tungsten and oxygen but may include minor-
ity concentrations of other elemental constituents such as
nitrogen, hydrogen, carbon and the like. Tungsten oxide may
consist of tungsten and oxygen. “Titanium nitride” is pre-
dominantly titanium and nitrogen but may include minority
concentrations of other elemental constituents such as nitro-
gen, hydrogen, carbon and the like. Titanium nitride may
consist of titanium and nitrogen.

The term “precursor” is used to refer to any process gas
which takes part in a reaction to either remove material from
or deposit material onto a surface. “Plasma effluents”
describe gas exiting from the chamber plasma region and
entering the substrate processing region. Plasma effluents are
in an “excited state” wherein at least some of the gas mol-
ecules are in vibrationally-excited, dissociated and/or ionized
states. A “radical precursor” is used to describe plasma efflu-
ents (a gas in an excited state which is exiting a plasma) which
participate in a reaction to either remove material from or
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deposit material on a surface. “Radical-fluorine” (or “radical-
hydrogen”) are radical precursors which contain fluorine (or
hydrogen) but may contain other elemental constituents. The
phrase “inert gas” refers to any gas which does not form
chemical bonds when etching or being incorporated into a
film. Exemplary inert gases include noble gases but may
include other gases so long as no chemical bonds are formed
when (typically) trace amounts are trapped in a film.

The terms “gap” and “trench” are used throughout with no
implication that the etched geometry has a large horizontal
aspect ratio. Viewed from above the surface, trenches may
appear circular, oval, polygonal, rectangular, or a variety of
other shapes. A trench may be in the shape of a moat around
an island of material. The term “via” is used to refer to a low
aspect ratio trench (as viewed from above) which may or may
not be filled with metal to form a vertical electrical connec-
tion. As used herein, a conformal etch process refers to a
generally uniform removal of material on a surface in the
same shape as the surface, i.e., the surface of the etched layer
and the pre-etch surface are generally parallel. A person hav-
ing ordinary skill in the art will recognize that the etched
interface likely cannot be 100% conformal and thus the term
“generally” allows for acceptable tolerances.

Having disclosed several embodiments, it will be recog-
nized by those of skill in the art that various modifications,
alternative constructions, and equivalents may be used with-
out departing from the spirit of the disclosed embodiments.
Additionally, a number of well known processes and ele-
ments have not been described in order to avoid unnecessarily
obscuring the present invention. Accordingly, the above
description should not be taken as limiting the scope of the
invention.

Where a range of values is provided, it is understood that
each intervening value, to the tenth of the unit of the lower
limit unless the context clearly dictates otherwise, between
the upper and lower limits of that range is also specifically
disclosed. Each smaller range between any stated value or
intervening value in a stated range and any other stated or
intervening value in that stated range is encompassed. The
upper and lower limits of these smaller ranges may indepen-
dently be included or excluded in the range, and each range
where either, neither or both limits are included in the smaller
ranges is also encompassed within the invention, subject to
any specifically excluded limit in the stated range. Where the
stated range includes one or both of the limits, ranges exclud-
ing either or both of those included limits are also included.

As used herein and in the appended claims, the singular
forms “a”, “an”, and “the” include plural referents unless the
context clearly dictates otherwise. Thus, for example, refer-
ence to “a process” includes a plurality of such processes and
reference to “the dielectric material” includes reference to
one or more dielectric materials and equivalents thereof
known to those skilled in the art, and so forth.

Also, the words “comprise,” “comprising,” “include,”
“including,” and “includes” when used in this specification
and in the following claims are intended to specify the pres-
ence of stated features, integers, components, or steps, but
they do not preclude the presence or addition of one or more
other features, integers, components, steps, acts, or groups.

What is claimed is:

1. A method of etching a patterned substrate in a substrate
processing region of a substrate processing chamber, wherein
the patterned substrate has a exposed tungsten region and an
exposed second material region, the method comprising:

flowing a fluorine-containing precursor into a remote

plasma region fluidly coupled to the substrate process-
ing region while forming a plasma in the plasma region
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to produce plasma effluents, wherein the fluorine-con-
taining precursor comprises a combination of nitrogen
trifluoride (NF;) and methyl fluoride (CH,F);

flowing the plasma effluents through a showerhead dis-

posed between the remote plasma region and the sub-
strate processing region; and

etching the exposed tungsten from the substrate.

2. The method of claim 1 wherein the exposed tungsten
region has a thickness of at least 5 nm.

3. The method of claim 1 wherein the exposed tungsten
region consists of tungsten.

4. The method of claim 1 wherein etching the exposed
tungsten region comprises etching the exposed tungsten
region comprises etching tungsten with a tungsten etch rate
greater than ten times the etch rate of the exposed second
material region.

5. The method of claim 1 wherein the operation of etching
the tungsten comprises etching tungsten faster than an
exposed second material region of silicon by a ratio of about
100:1 or more, faster than an exposed second material region
of'silicon oxide by a ratio of about 15:1 or more, faster than an
exposed second material region of silicon carbon nitride by a
ratio of about 3:1 or more or faster than an exposed second
material region of tungsten oxide by a ratio of about 10:1 or
more.

6. The method of claim 1 wherein the fluorine-containing
precursor comprises a partially fluorinated hydrocarbon.

7. The method of claim 1 further comprising a pretreatment
step which occurs prior to etching the exposed tungsten
region, wherein the pretreatment step comprises flowing
hydrogen (H,) into the remote plasma region and flowing the
produced plasma effluents into the substrate processing
region to remove a thin tungsten oxide layer overlying a
near-surface tungsten region to create the exposed tungsten
region.

8. The method of claim 1 wherein the fluorine-containing
precursor comprises carbon tetrafluoride.

9. The method of claim 1 wherein flowing a fluorine-
containing precursor and hydrogen (H,) results in an atomic
flow ratio (H:F) of greater than 1:1 entering the substrate
processing region.

10. The method of claim 1 wherein flowing a fluorine-
containing precursor and hydrogen (H,) results in an atomic
flow ratio (H:F) of less than 15:1 entering the substrate pro-
cessing region.

11. The method of claim 1 wherein a pressure within the
substrate processing region is between about 0.01 Torr and
about 50 Torr during the etching operation.

12. The method of claim 1 wherein forming a plasma in the
plasma region to produce plasma effluents comprises apply-
ing RF power between about 10 watts and about 400 watts to
the plasma region.

13. The method of claim 1 wherein a temperature of the
substrate is greater than or about —30° C. and less than or
about 400° C. during the etching operation.

14. A method of etching a patterned substrate in a substrate
processing region of a substrate processing chamber, the
method comprising:

exposing a tungsten region on the patterned substrate,

wherein the exposure comprises flowing plasma efflu-
ents of a hydrogen-containing precursor into the sub-
strate processing region;

subsequently flowing a fluorine-containing precursor into

a remote plasma region fluidly coupled with a substrate
processing region of a processing chamber while form-
ing a plasma in the plasma region to produce plasma
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effluents, wherein the fluorine-containing precursor
comprises a combination of nitrogen trifluoride (NF; )
and methl fluoride (CH,F);
flowing the plasma effluents through a showerhead dis-
posed between the remote plasma region and the sub-
strate processing region; and
etching the exposed tungsten from the substrate.
15. The method of claim 14, wherein the exposure com-
prises removing tungsten oxide from the tungsten region.
16. A method of etching a patterned substrate in a substrate
processing region of a substrate processing chamber, the
method comprising:
flowing a hydrogen-containing precursor into a remote
region fluidly coupled with a substrate processing region
of a processing chamber while forming a plasma in the
plasma region to produce hydrogen-containing plasma
effluents;
subjecting tungsten oxide on the patterned substrate to the
hydrogen-containing plasma effluents to expose tung-
sten;
flowing a fluorine-containing precursor into the remote
plasma region while forming a plasma to produce fluo-
rine-containing plasma effluents, wherein the fluorine-
containing precursor comprises a combination of nitro-
gen trifluoride (NF;) and methyl fluoride (CH,F); and
etching the exposed tungsten from the substrate with the
fluorine-containing plasma effluents.
17. The method of claim 16, wherein the hydrogen-con-
taining precursor is molecular hydrogen (H,).
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